Tuning the compressive mechanical properties of carbon nanotube foam
نویسندگان
چکیده
A post-growth chemical vapor deposition (CVD) treatment was used to tune the compressive mechanical properties of carbon nanotube (CNT) arrays. Millimeter tall CNT arrays with low compressive resilience were changed to a foam-like material with high compressive strength and almost complete recovery upon unloading. The foam was tuned to provide a range of compressive properties for various applications. The treated arrays demonstrated compressive strength up to 35· greater than the as-grown CNT array. Unlike polymeric foams, the CNT foam did not decompose after exposure to high temperatures. Investigation of the foam structure revealed that the CVD treatment increased CNT diameter through radial growth, while increasing the CNT surface roughness. The morphological changes help to explain the increase in CNT array compressive strength and the transition from permanent array deformation to foam-like recovery after compressive
منابع مشابه
Effects of Nanotube/Matrix Interface on Multi-Walled Carbon Nanotube Reinforced Polymer Mechanical Properties
In this paper, experimental and Finite Element Methods have been used to determine mechanical properties of nanocomposites. Standard tensile and compression samples with 0.0, 0.15, 0.25, 0.35, 0.45, and 0.55 weight fraction of Multi-Walled Carbon Nanotube (MWCNT) were prepared and tested. Nanotube weight fraction was varied to investigate the effects of nanotube weight fraction on nanocomposite...
متن کاملAb Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملUltralight anisotropic foams from layered aligned carbon nanotube sheets.
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recover...
متن کاملGraphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue.
Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density, and these properties have been exploited in nanotube-based foams and aerogels. However, all nanotube-based foams and aerogels developed so far undergo structural colla...
متن کاملSuper-compressible foamlike carbon nanotube films.
We report that freestanding films of vertically aligned carbon nanotubes exhibit super-compressible foamlike behavior. Under compression, the nanotubes collectively form zigzag buckles that can fully unfold to their original length upon load release. Compared with conventional low-density flexible foams, the nanotube films show much higher compressive strength, recovery rate, and sag factor, an...
متن کامل